一、鼓泡塔的流体力学特性
鼓泡塔的*基本现象:气体以气泡形态存在。
基本特性:气泡的形状、大小及其运动状况直接影响宏观反应过程。
1.流动状态和气泡特性
工业鼓泡塔反应器通常在两种流动状态下操作,即安静区和湍动区。
所谓安静区操作,即鼓泡塔中的气体流量较小,气泡大小比较均匀,规则地浮升,液体搅拌并不显著。在安静区操作,既能达到一定的气体流量,又可避免气体的轴向返混,很适用于动力学控制的慢反应。
所谓湍动区操作,在气体流量较大时,气泡运动呈不规则现象,液体作高度地湍动,塔内物料强烈混合,气泡作用的机理比较复杂,这种情况称为湍动区。在湍动区气泡大小不均匀,大气泡上升速度快,小气泡上升速度慢,停留时间不等,加之无定向搅动,不仅呈*的液相返混,也造成气相返混。
2.气泡大小
气泡的大小直接关系到气液传质面积。在同样的空塔气速下,气泡越小,说明分散越好,气液相接触面积就越大。
在安静区,因为气泡上升速度慢,所以小孔气速对其大小影响不大,主要与分布器孔径及气液特性有关。
在湍动区,气泡是靠气流与液体之间的喷射、冲击和摩擦而形成。因此在这种鼓泡塔内,气泡的形状、大小和运动是各式各样的,是瞬息万变的,是随机的,形成大小不一的气泡群。
3.气含率
气含率的含义是气液混合液中气体所占的体积分率,可用下式表示:
式中εG——气含率;
VG——气体体积,m3;
VL——液体体积,m3;
VGL——气液混合物体积,m3。
对圆柱形塔来说,由于横截面一定,因此气含率的大小意味着通气前后塔内充气床层膨胀高度的大小。对于传质与化学反应来讲,气含率非常重要,因为气含率与停留时间及气液相界面积的大小有关。
影响气含率的因素主要有设备结构、物性参数和操作条件等。一般气体的性质对气含率影响不大,可以忽略。而液体的表面张力σL、粘度μL与密度ρL对气含率都有影响。溶液里存在电解质时会使气液界面发生变化,生成上升速度较小的气泡,使气含率比纯水中的高15%~20%。空塔气速增大时,εG也随之增加,但μOG达到一定值时,气泡汇合,εG反而下降。εG随塔径D的增加而下降,但当D>0.15m时,D对εG无影响。当μOG<0.05m/s时,εG与塔径D无关。(因此实验室试验设备的直径一般应大于0.15m,只有当μOG<0.05m/s时,才可取小塔径。
4.气液比相界面积
气液比相界面积是指单位气液混合鼓泡床层体积内所具有的气泡表面积,α的大小直接关系到传质速率,是重要的参数,α值测定比较困难,人们常利用传质关系式NA=kLαΔcA直接测定kLα之值进行使用。
5.鼓泡塔内的气体阻力ΔP
鼓泡塔内的气体阻力由两部分组成:一是气体分布器阻力,二是床层静压头的阻力。
6、返混
鼓泡塔内液相存在返混,所以通常工业鼓泡塔反应器内液相视为理想混合。塔内气体的返混一般不太明显,常假设为置换流,其计算误差约为5%。但要求严格计算时,尤其是当气体的转化率较高时,需考虑返混。
二、鼓泡塔的传质
鼓泡塔反应器内的传质过程中,一般气膜传质阻力较小,可以忽略,而液膜传质阻力的大小决定了传质速率的快慢。
当鼓泡塔在安静区操作时,影响液相传质系数的因素主要是气泡大小、空塔气速、液体性质和扩散系数等;而在湍动区操作时,液体的扩散系数、液体性质、气泡当量比表面积以及气体表面张力等,成为影响传质系数的主要因素。
三、鼓泡塔的传热
鼓泡塔中的传热,通常以三种方式进行:利用溶剂、液相反应物或产物的汽化带走热量;采用液体循环外冷却器移出反应热,(;采用夹套、蛇管或列管式冷却器。
鼓泡床中由于气泡的运动,床层中的液体剧烈扰动。流体对换热器壁的给热系数比自然对流给热系数大10余倍之多,通常它不成为热交换中的主要阻力。鼓泡塔的总传热系数通常为 694~915W/(m2·K)。
半连续鼓泡塔
半连续操作的鼓泡塔反应器是指液体一次性加入,气体连续通入反应器底部,以气泡形式通过床层,*后从顶部逸出,直到液相中组成达到要求时停止送气且将液体作为成品排出反应器。在这种反应器中,气体是连续投料,液体是间歇投料,故称半连续操作的鼓泡塔反应器。与均相间歇反应器一样,每个操作周期由反应时间τ 与辅助时间τ'组成。